

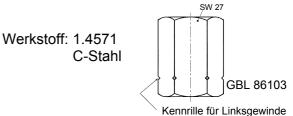
Vertrieb: Hemsack 27· 59174 Kamen

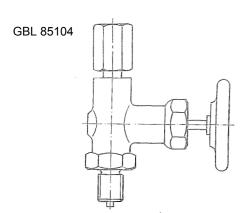
Telefon: (0 23 07) 9 24 84-0 Telefax: (0 23 07) 9 24 84-19 Internet: www.himpe.de E-Mail: vertrieb@himpe.de

Druckentnahmestutzen PN 400

Zubehör zur Druckmessung bei Dampf, Gasen und Flüssigkeiten

PES


Manometer-Absperrventil Form A DIN 16270 oder DIN 16271 mit Prüfanschluss


Spannmuffe G 1/2 DIN 16283

Eingang : G 1/2 mit Zapfen

Ausgang : G 1/2 mit Spannmuffe DIN 16283

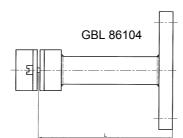
Werkstoff: 1.0460 oder 1.4571

Dichtscheiben DIN 16258 Form B

für Gewinde G 1/2

Werkstoff: Kupfer

Weicheisen Aluminium Teflon (PTFE) 1.4571 Kammprofil

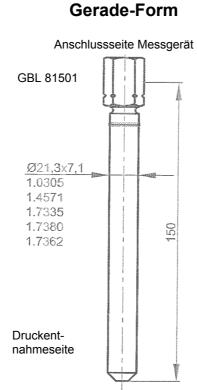


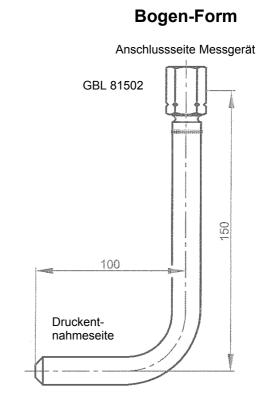
Manometer-Anschlussstück DIN 16281

Eingang

mit Zapfen: G 1/2 Ausgang: G 1/2 Werkstoff: CK35

oder 1.4571




Manometerhalter zur Wandbefestigung DIN 16281

L = 60, 100 oder 160 Werkstoff: Stahl verzinkt oder Edelstahl

Manometer-Anschlussrohr

Anschlussseite Messgerät GBL 81504 Druckentnahmeseite

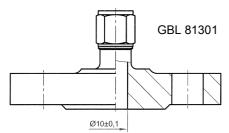
Druckmessflansch

Eingang : DN 15-25 / PN 10-160

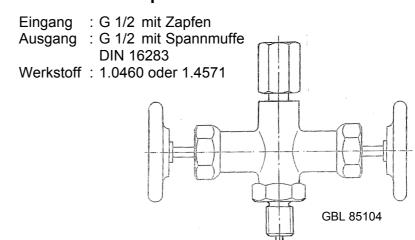
NPS 1/2-1 / Class 150-600

Ausgang: G 1/2 mit Spannmuffe

DIN 16283

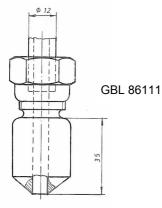

Ø 12S DIN 2353

Ø 12 Gyrolok / Swagelok


Ø 1/2 in Gyrolok / Swagelok

Werkstoff: 1.4571

Ø 12S



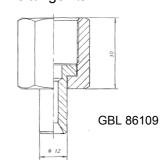
Manometer-Absperrventil Form A DIN 16272

Schweiß-Verschraubung mit Schneidringverschluss nach

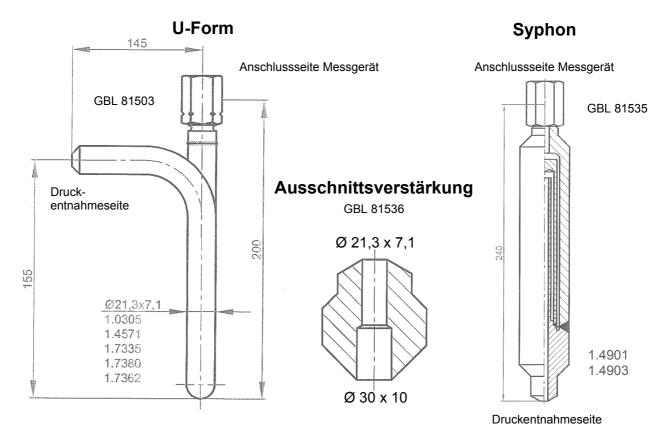
DIN 2353 Ø 21.3

Druckentnahmeseite

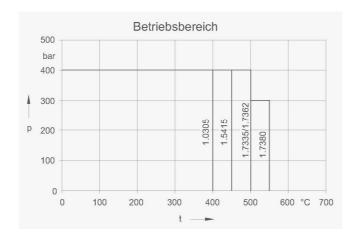
Manometeranschlussverschraubung


nach EN / ISO 8434-1

128


GBL 86181

Nippel-Verbindung nach DIN 16284


zum direkten Anschluss von Absperrventilen mit Manometern an Rohrleitungen Ø 12mm

Druckentnahmeseite

Belastungsdiagramm

Übersichtstafel der Messanordnung

Eine Übersicht über die möglichen Messanordnungen, bei denen die gekennzeichneten Anordnungen (►) zu bevorzugen sind, zeigt nachstehende Tafel.

Zustand des Messstoffes	flüssig			gasförmig		
Zustand der Füllungen in der Messleitung	flüssig	z. T. ausgasend	vollständig verdampft	gasförmig	z. T. kondensiert (feucht)	vollständig kondensiert
Beispiele	Kondensat	siedende Flüssigkeiten	Flüssig- gase	trockene Luft	feuchte Luft	Wasser- dampf
a) Druckmessgerät oberhalb des Entnahme- stutzens			O	O		
b) Druckmessgerät Unterhalb des Entnahme- stutzens	5			5		

Bei der Auswahl einer geeigneten Einrichtung sind zu berücksichtigen:

- Druck, Temperatur, chemische und physikalische Eigenschaften und Aggregatzustand des Messstoffes (Fluid in der Betriebsapparatur)
- Aggregatzustand des Füllstoffes (Fluid in der Messleitung) bei Umgebungstemperatur
- Einfluss der Messordnung auf das Zeitverhalten der Messeinrichtung
- Die durch den Höhenunterschied zwischen Entnahmestutzen und Druckmessgerät verursachte Verschiebung des Messanfangswertes